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1 Introduction

One of the appealing properties of gauge mediated supersymmetry (SUSY) breaking is its

restricted parameter space. This contrasts with gravity mediation where the parameter

space is of high dimensionality. However, it has become evident that the parameter space

of gauge mediation is larger than we used to imagine. In particular, the authors of [1] have

introduced a novel framework suitable for discussing and analysing very general models of

gauge mediation in a model-independent way. It is now timely to undertake a phenomeno-

logical study of general gauge mediation to complement those of gravity mediation and

this is the primary motivation of this paper (as well as recent work in refs. [2, 3]).

The General Gauge Mediation (GGM) paradigm [1] is defined by the requirement

that the Minimal Supersymmetric Standard Model (MSSM) becomes decoupled from the

hidden SUSY-breaking sector in the limit where the three MSSM gauge couplings αi=1,2,3

are set to zero. Since no other parameters participate in the coupling of the two sectors,

this strict interpretation of gauge mediation can be called ‘general pure gauge mediation’

or pure GGM. This framework is broad enough to include everything from weakly coupled

models with explicit messengers to strongly coupled theories with direct mediation.

The main free parameters in this setup are the gaugino and scalar masses as well as the

messenger scale. For simplicity we restrict ourselves in this work to a single effective scale

ΛG for the gaugino masses and a single scale ΛS for the scalars.1 Thus at the messenger

1We do not split the scale for the different gauge representations as was done in [2, 3].
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scale Mmess the soft supersymmetry breaking gaugino masses are

Mλ̃i
(Mmess) = ki

αi(Mmess)

4π
ΛG (1.1)

where ki = (5/3, 1, 1), kiαi (no sum) are equal at the GUT scale and αi are the gauge

coupling constants. The scalar mass squareds are

m2
f̃
(Mmess) = 2

3
∑

i=1

Ciki
α2

i (Mmess)

(4π)2
Λ2

S (1.2)

where the Ci are the quadratic Casimir operators of the gauge groups. Ordinary gauge me-

diation scenarios (see ref. [4] for a review) live on the restricted parameter space ΛG ≃ ΛS .

Outside the confines of ordinary gauge mediation the parameter space is populated by

many models that predict different values of the ratio of gaugino to scalar masses, ΛG/ΛS .

In models with explicit messengers one expects this ratio to be close to one, while for direct

mediation models the gaugino masses are often suppressed relative to the scalar masses [5–

10]. Recently, hybrid models have been constructed which interpolate between these two

cases [11]. It is also possible to achieve values ΛG/ΛS > 1 by increasing the “effective

number of messengers” in the context of extraordinary gauge mediation models [12]. Indeed

we argue that the set of models defined by ΛG, ΛS and Mmess are the gauge mediation

equivalent to the canonical mSUGRA (or Constrained MSSM) scenario, with ΛG and ΛS

playing the role of the parameters m1/2 and m0 in those models.

With such a plethora of possibilities suddenly available, it is therefore important to

determine if any region in this parameter space is favoured by experimental data. Ac-

cordingly, in this paper we will confront the full ΛG, ΛS and Mmess parameter space with

a number of measured observables in order to provide direction for model building and

investigate expected LHC signals.

Before we proceed to the phenomenology we outline our approach to the supersym-

metry breaking in the Higgs sector. Pure General Gauge Mediation on its own does not

generate the µ-parameter appearing in the effective Lagrangian,

Leff ⊃
∫

d2θ µHuHd , (1.3)

where the Higgs superfields are denoted by H and their scalar components are H. The

phenomenologically required value of µ is roughly of the order of the electroweak scale

and as usual will be determined in our analysis from the requirements of electroweak

symmetry breaking.

In addition to the supersymmetric interaction (1.3), the Higgs-sector effective La-

grangian also includes soft supersymmetry-breaking terms. All of the latter must be gener-

ated by the SUSY-breaking sector, since there would be little merit in a model of dynamical

SUSY-breaking which generates only a subset of the SUSY-breaking terms in the effective

SM Lagrangian. There are quadratic terms

m2
u|Hu|2 + m2

d|Hd|2 + (BµHuHd + c.c.) , (1.4)

– 2 –
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as well as cubic a-terms

aij
u HuQiūj + aij

d HdQ
id̄j + aij

LHdL
iĒj , (1.5)

in the MSSM. As is well-known, a phenomenologically acceptable electroweak symmetry

breaking in the supersymmetric SM occurs if µ2 and the soft masses in (1.4) at the low

scale (i.e. the electroweak scale) are of the same order, µ2 ∼ Bµ ∼ m2
soft ∼ M2

W .

In a strict interpretation of gauge mediation, where we have no direct couplings of

the SUSY-breaking sector to the Higgs sector, we have Bµ ≈ 0 at the messenger scale. In

section 2 we will argue that more generally it is indeed natural to have negligibly small

input values for Bµ at the messenger scale, Bµ ≪ µ2 ∼ m2
soft. From this starting point,

i.e. taking Bµ ≈ 0 at the high scale Mmess, a quite small but perfectly viable value of Bµ

is then generated radiatively at the electroweak scale [13, 14].

We then use the measured value of the mass of the Z-boson to predict values of tan β

and µ from the requirement of electroweak symmetry breaking. Since it is Bµ which is

responsible for communicating the vev of Hu to Hd, this implies that the ratio of these two

vevs, tan β, will be large (between 15 and 65). This is in contrast to the common approach

where tan β is taken as an arbitrary input and Bµ at the high scale is obtained from it.

For us Bµ (rather than tan β) is the fundamental quantity.

The fact that tan β is expected to be large results in distinctive phenomenological

features. For example, it is well known that certain Yukawa couplings in the MSSM are

enhanced at large tan β, leading to significant supersymmetric contributions to rare flavour-

changing branching ratios. SUSY loop effects can also explain the discrepancy between

the measured value of the anomalous magnetic moment of the muon and its predicted

value in the Standard Model. Accordingly, precision measurements give us an opportunity

indirectly to constrain the GGM parameter space.

In the following section we discuss the logical possibilities for µ and Bµ with reference

to their generation in SUSY-breaking GGM models. The detailed phenomenological study

is given in section 3 with the spectra of the best-fit points in appendix B. A complementary

analysis of the parameter space in terms of the fine-tuning necessary to break electroweak

symmetry is presented in section 4.

2 General gauge mediation and µ / Bµ

In the context of gauge mediation, a typical coupling of the Higgs fields to the SUSY-

breaking sector leads to Bµ ≫ µ2 which is phenomenologically unacceptable. This is often

referred to as the µ/Bµ-problem of gauge mediation which can be reconsidered in the

context of the extended GGM construction of [15] with SUSY-breaking sectors involving

more than a single scale. Earlier approaches using particular gauge mediation models were

constructed previously in refs. [16–24].

In this section we will describe the conceptual reasons that compel us to take Bµ ≈ 0

at the messenger scale. A fuller discussion of the theoretical underpinnings as well as

some specific model building examples are given in appendix A. We will also review the

– 3 –
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RG behaviour which generates a small but phenomenologically viable value of Bµ at the

weak scale.

Very generally we can think of three logical possibilities for µ:

(a) Being part of the superpotential, µ a priori has nothing to do with SUSY-breaking

and in particular with the gauge-mediation mechanism. In this scenario µ in (1.3) ap-

pears as a tree-level parameter from the GGM perspective. The reason why µ ≪ MPl

would then have to be addressed in a way decoupled from any SUSY-breaking mech-

anism. In other words, some SUSY-preserving new physics would have to generate

appropriate µ dynamically by giving VEVs to appropriate fields; µ is not a problem

of gauge mediation and Bµ is roughly zero at the messenger scale. This is the pure

GGM setting.

(b) The second possibility is that µ is generated by the SUSY-breaking sector such that

µ ∝ M , where M is a SUSY-breaking sector mass-scale, which however is distinct

from (and much higher than) the SUSY-breaking scale, M2 ≫ F . In order to en-

able such µ-generation in the first place, one needs to extend the pure GGM of [1]

to include additional non-gauge couplings between the Higgses and the fields of the

SUSY-breaking sector. This set-up corresponds to the so-called two-scale models

in the terminology of [15]. The coupling to the Higgses then, as we discuss in ap-

pendix A, automatically induces a non-vanishing Bµ.

(c) Finally, one could imagine generating µ by coupling Higgs fields to a simple one-

scale SUSY-breaking sector. In this case µ ∝ F/M . Here F is the SUSY-breaking

F -term and M is the messenger mass. F/M is the single mass-scale characterising

this scenario. Again, Bµ is generated by the coupling of the Higgses to the SUSY-

breaking sector, and, as is well known, it typically is unacceptably large and wrecks

phenomenology (see appendix A).

In the scenarios of case (a) the entire µ/Bµ-issue does not present a problem. The µ-

parameter is generated by high-energy physics distinct from SUSY-breaking and can be

viewed as a tree-level effect in the MSSM. At the same time Bµ is generated by normal

gauge mediation at two loops in the SM couplings. There are no additional effects on Bµ

from the SUSY-preserving sector which has generated µ. In practice this amounts to taking

Bµ ≃ 0 at the (high) messenger scale and treating µ alone as an a priori arbitrary input

parameter which will be fixed (together with tan β) to achieve appropriate electroweak

symmetry breaking at the low scale. All models of the type (a) naturally fit within the

class we have phenomenologically analysed in section 3.

The only other acceptable scenario — case (b) can quite easily resolve the µ/Bµ-

problem, which is the central result of [15]. What happens is that the µ-parameter is

induced at a high (SUSY-preserving) scale M through non-gauge couplings between the

Higgses and the SUSY-breaking sector. At the same time, these couplings also generate

new contributions to the SUSY-breaking Bµ and other soft parameters (on top of the usual

pure gauge-mediated effects). Since, contrary to µ, the soft terms must vanish when SUSY

is restored, they are generated at the SUSY-breaking scale F ≪ M2.

– 4 –
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For the particular choice of parameters advocated in [15], the resulting pattern (at the

messenger scale) is

Bµ ∼ µ2 ∼ m2
soft (2.1)

As argued in appendix A case (b) can naturally generate a different pattern (at the mes-

senger scale),

Bµ ≪ µ2 ∼ m2
soft. (2.2)

In this case the models of type (b) are also included in the class we have phenomenologically

analysed in section 3.

2.1 The Bµ parameter at low energy

In order to perform the phenomenological analysis we need to compute the weak scale

value of Bµ in eq. (2.2) after its running down from the messenger scale. In practice we

will do this numerically as for all the other parameters. However to get a feeling for the

important effects we will briefly review the analytic approximation, as presented in ref. [4].

It is convenient to work with the parameter

B =
Bµ

µ
(2.3)

which is of mass dimension one. If at scale Mmess the B parameter is set to an initial value

B0, then at a low scale Q(t = ln(M2
mess/Q

2)) it runs to be [4]

B(t) = B0 +

(

H4 −
Kt

2
H2

)

ΛG + δBNLO(t). (2.4)

In our approach we will, as we have already mentioned, take the initial value B0 = 0.

The remaining terms in (2.4) which represent the running include

H4 =

3
∑

r=1

aµ
r

br
kr

αr(0) − αr(t)

4π

with aµ
r = 2(CHu

r +CHd
r ) = (1, 3, 0), and br = (11, 1,−3) being the beta function coefficients.

Also, defining

E =

3
∏

r=1

[

αr(0)

αr(t)

]
ar
br

, F =

∫ t

0
dtE (2.5)

where ar = w(CQL
r + C t̃R

r + CHu
r ) = (13/9, 3, 16, 3) one has

H2 =
αX tX

4π

[

E

F

(

t

tX
− 1

)

+
1

F
− 1

tX
+

3
∑

r=1

ar
α(0)

4π

]

(2.6)

where tX = ln(M2
mess/M

2
X) and αX are the unification scale and unification gauge coupling

constant in a theory without messengers, and

Kt =
6F

E

h2
t (t)

(4π)2

– 5 –
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The next to leading order corrections are given by

δB(NLO)(t) = −α2
s(t)h

2
t (t)

8π4
tΛG +

3
∑

r=1

aµ
r kr

α2
r(t)

(4π)2
ΛG (2.7)

which is suppressed by an additional loop factor or a factor of 1/t with respect to the

leading order contribution.

The middle term in eq. (2.4) is the pure running effect and vanishes at the messenger

scale, so that

B(t = 0) = B0 + δB(NLO)(t = 0). (2.8)

As we already noted the first term on the right hand side is zero in our setup and the

second term is precisely the two-loop contribution to B generated at the messenger scale.

The above gives the reader an analytical understanding of the generation of B. As

we have said the SoftSUSY program uses the numerical integration of the RG equations,

and this includes additional contributions from down-type quarks, leptons and all three

families.

3 Phenomenology

Recent work on the phenomenology of GGM includes refs. [2, 3] where tan β was taken as

a free input parameter and Bµ computed from it. As explained in the Introduction, our

approach is to take the fundamental parameter Bµ as an an input; we take the theoretically

motivated value Bµ = 0 at the messenger scale. A non-zero value of Bµ is then generated

radiatively (see below and also section 2.1). This predicts specific values for tan β.

In the following we present constraints on the parameter space and details of the

spectrum, commenting on the implications for SUSY searches at the LHC. We continue

by discussing the implications of low energy precision observables for our scenario and the

preferred values of ΛG/ΛS . All the results we discuss are for µ > 0. (We have also done

scans for µ < 0 and found that it is phenomenologically disfavoured by the low-energy

observables. We do not present results for this case.)

To compute the spectrum from the soft terms given in eqs. (1.1) and (1.2) we use a

version of SoftSUSY 3.0.9 [25] which we modified to accept Bµ, rather than tan β, as an

input. The value of tan β is set according to the requirement that electroweak symmetry

be correctly broken. We have scanned over the range 3.0 × 104 ≤ ΛG ≤ 3.0 × 106 GeV

in the gaugino masses and 1.0 × 103 ≤ ΛS ≤ 3.0 × 106 GeV in the scalar masses, where

the parameters ΛG and ΛS were defined in eqs. (1.1) and (1.2) (for Mmess = 106 GeV we

alter the upper bounds on ΛG,S to 1.0 × 106 GeV). We have chosen a smaller lower bound

in the scalar mass parameter ΛS as this is not ruled out from a purely phenomenological

point of view due to significant effects of the gaugino masses in the running of the scalar

masses. On the other hand, we will be able to provide a lower bound on the gaugino mass

parameter ΛG by considering the negative results of direct searches at colliders. We present

results for Mmess = 106 GeV, 1010 GeV and 1014 GeV corresponding to low, medium and

large messenger masses. Any points that do not break electroweak symmetry correctly, have

– 6 –
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tachyonic sparticles in their spectrum, have couplings that become non-perturbative before

the GUT scale, have a scalar Higgs potential unbounded from below or have a spectrum

that violates the direct search limits detailed below are excluded from our results. There are

also points in our scans where SoftSUSY has not numerically converged, due to the large

hierarchies between the scalars and gaugino masses. While we therefore cannot present

results on these regions they are not necessarily theoretically excluded.

We have also applied constraints from direct searches at the Tevatron and LEP, adapted

from [2, 26]. There is an absolute lower limit of 45 GeV on the chargino mass from LEP.

If the NLSP is the neutralino (with the LSP in all models of gauge mediation being, of

course, the gravitino) and the chargino-neutralino splitting is less than mπ+ , limits from

searches for long-lived charged particles imply a lower bound of 206 GeV for the chargino

mass. A promptly decaying chargino with chargino-neutralino splitting greater than 3GeV

is required to be heavier than 229 GeV, while a non-promptly decaying chargino must be

heavier than 102.7 GeV.

The lower limit on the gluino mass is 51 GeV for non-gluino NLSP. A promptly decaying

gluino NLSP is required to be heavier than 315 GeV, while non-promptly decaying gluinos

must be heavier than 270 GeV. The lightest squarks have a lower bound of 92 GeV, while

the sneutrino must be heavier than 43 GeV. For slepton NLSP, we apply bounds of 68 GeV

for the stau and 85 GeV for the selectron and smuon when Mmess = 1×106 GeV. Searches at

the OPAL detector [27] place limits on slowly (i.e. the decay happens outside the detector)

decaying NLSP sleptons of 98 GeV. For higher messenger masses, Mmess = 1010,14 GeV, the

stau NLSP is automatically sufficiently slowly decaying. For Mmess = 106 GeV this is not

guaranteed but the bound does not exclude any additional parameter space anyway. For

non-slepton NLSP the selectron and smuon masses are required to be greater than 100 GeV

and 95 GeV respectively, while the stau mass must be greater than 90 GeV. Finally, the

absolute lower limit on the neutralino mass is 46 GeV. The promptly decaying neutralino

NLSP has a lower bound of 125 GeV, while the non-prompt decay has a lower bound of

46 GeV. In principle in General Gauge Mediation the neutralino could be massless [28].

This requires non-universal gaugino masses, and thus in our model with degenerate ΛG

does not arise.

The direct search constraints lead to a lower bound on ΛG of 58 TeV for Mmess =

106 GeV and 38 TeV for Mmess = 1010,14 GeV, in agreement with [2]. The region of low

ΛG and ΛS is ruled out by tachyonic scalars and direct search limits. For larger values of

ΛG the contribution of the gaugino masses can increase the scalar masses during running

from Mmess to low energies by a sufficient amount so as to result in phenomenologically

viable scalar masses. It is this effect which is responsible for the large region at very low

ΛS . Large values of ΛS , and hence large tan β can lead to non-perturbativity before the

GUT scale. The large masses involved also make it difficult for the numerical routines in

SoftSUSY to converge. These effects rule out the regions at the regions at high ΛS . This

is what cuts off the allowed region in parameter space in the top-left corner where tan β

becomes very large. Most of the parameter space for split SUSY spectra, ΛG ≪ ΛS , is not

viable. However, it is important to stress that the remaining region (close to this boundary)

still allows for a mildly split SUSY with ΛG/ΛS ∼ 1/10. This is where the direct gauge

– 7 –
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Figure 1. Plots showing the constraints on parameter space for (a) MMess = 106 GeV, (b) MMess =

1010 GeV and (c) Mmess = 1014 GeV. Yellow (pale grey) means the point is excluded by the presence

of tachyons in the spectrum, while the black region falls foul of the direct search limits detailed in

the text. In the blue (dark grey) region SoftSUSY has not converged and in the green (light grey)

region a coupling reaches a Landau pole during RG evolution. The red dotted line indicates the

ordinary gauge mediation scenario where ΛG = ΛS .
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mediation models considered in refs. [5–10] can live and is the location of the benchmark

point presented in ref. [9].

The constraints described above are summarised in figure 1 (a,b,c) which correspond

to Mmess = 1 × 106,10,14 GeV respectively. Yellow regions have a tachyon in the spectrum.

Black regions are in principle viable, but are ruled out by the direct searches. The blue

region indicates where SoftSUSY did not converge, and in the green area a coupling en-

counters a Landau pole. Not surprisingly lack of convergence indicates that one is in the

proximity of a Landau pole.

Let us now turn to some specific properties of our scenario. As already explained we

take Bµ = 0 at the high (messenger) scale. As expounded in some detail in section 2.1, it

is then radiatively generated and its value at the low scale is roughly proportional to the

gaugino mass parameter ΛG. This dependence on ΛG can be clearly seen in figure 2 (a,c,e)

where we show the low energy values of B = Bµ/µ for Mmess = 106,10,14 GeV in the ΛG-ΛS

plane. B does not strongly depend on the scalar mass parameter ΛS . In the region of light

scalars and gauginos, B is a few hundred GeV and increases with ΛG. We also show the

red dotted line corresponding to minimal gauge mediation ΛG = ΛS which was already

investigated in ref. [13].

The fact that tan β is a determined parameter rather than a free input is where our

approach markedly differs from previous studies such as that in [2, 3]. Figure 2 shows the

values of tan β obtained for (b) Mmess = 106, (d) 1010 GeV and (f) 1014 GeV, along with

contour lines of tan β = 20, 30, 40, 50 and 60. In general we expect large tan β since Bµ

is small. Since the low energy value of Bµ increases with ΛG we therefore would expect

tan β to decrease as ΛG increases. However, this holds only when when the running of

the Higgs masses is dominated by ΛS and thus we observe this behavior only in the top

parts of figure 2(b,d,f). As Bµ will be smaller for low values of Mmess, tan β will be

correspondingly higher for Mmess = 106 GeV than for Mmess = 1010 GeV or 1014 GeV. For

Mmess = 106 GeV the minimum value of tan β is 43.9, for Mmess = 1010 GeV it is 22.2 and

for Mmess = 1014 GeV the minimum value is 15.8. The maximum values of tan β are 63.7,

53.9 and 48.4 for Mmess = 106,10,14 GeV, respectively.

Considering the spectrum, figure 3 (a,c,e) shows the mass of the lightest neutralino

for Mmess = 106,10,14 respectively. The black contour line bisecting the plots diagonally

indicates the nature of the NLSP: above the black line the NLSP is the lightest neutralino,

while below it the NLSP is the lightest slepton, the stau. The stau NLSP could provide

for a rather interesting signature. Since the NLSP decay into gravitinos can be quite

small, the stau NLSP can behave like a metastable charged particle that can even decay

outside the detector. Such particles have rather interesting phenomenological features as

discussed, e.g., in refs. [29–32]. Unlike ref. [3] we do not find any regions of sneutrino or

chargino NLSP.

The collider phenomenology of gauge mediated theories is determined to a large extent

by the NLSP and NNLSP. Accordingly figures 3 (b,d,f) show the species of NNLSP ac-

cording to the following scheme: green is the second lightest neutralino, brown is a slepton

(either the stau or the smuon) and blue is the lightest chargino. For neutralino NLSP

there is a significant proportion of parameter space which also has neutralino NNLSP. In
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Figure 2. The low energy values of the B parameter for (a) Mmess = 106 GeV, (c) Mmess =

1010 GeV and (e) Mmess = 1014 GeV. Figure 2 (b,d,f) shows the values of tanβ obtained from the

electroweak symmetry breaking conditions for (b) Mmess = 106 GeV, (d) Mmess = 1010 GeV and (f)

Mmess = 1014 GeV along with contours of tanβ = 20, 30, 40, 50 and 60. Note that the scales of the

colour coding are different for each plot. The red dotted line indicates the ordinary minimal gauge

mediation scenario where ΛG = ΛS .
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Figure 3. Details of the spectrum for (a,b) Mmess = 106, (c,d) Mmess = 1010 and (e,f) Mmess =

1014 GeV. Figure 3 (a,c,e) show the lightest neutralino mass. Above the black line the NLSP is

neutralino, below it is the lightest slepton (usually the stau, sometimes the smuon). Figure 3 (b,d,f)

shows the NNLSP species. Green is neutralino, brown is a slepton and blue is the lightest chargino.
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Figure 4. Further phenomenological features for (a,b) Mmess = 106, (c,d) Mmess = 1010 and (e,f)

Mmess = 1014 GeV. Figure (a,c,e) show the mass of the lightest stop mt̃1
, with contours of 1, 2.5

and 5 TeV. Figure (b,d,f) shows the values of the anomalous magnetic moment of the muon δaµ

along with the ±1σ contours.
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this case the three body decay χ0
2 → χ0

1l
+l− is most likely to occur. In the region of low

scalar mass with stau NLSP and slepton NNLSP, large tan β implies that the splitting

between the NLSP and the heavier ẽ and µ̃ can be reasonably big, leading to 3 body slep-

ton decay into a stau, l̃± → τ̃±τ∓l−, with generally larger production cross sections for

sleptons than for squarks. Figure 4 (a,c,e) shows the mass of the lightest squark, the stop,

along with mass contour lines at 1, 2.5 and 5 TeV for Mmess = 106 GeV, 1010 GeV and,

1014 GeV respectively.

In the MSSM, decay processes that are naively suppressed by loop factors can be-

come enhanced by factors of tan β. This applies in particular to flavor changing neutral

current (FCNC) processes. Precision measurements in the B-physics sector therefore al-

ready present strong constraints on a light spectrum of superparticles. Accordingly, we

have calculated in our scans several low energy constraints which we have applied to the

parameter space of our effective model to bound the possible values of ΛG/ΛS . We show

the observables we have used in table 1, along with their experimentally determined val-

ues. We include the anomalous magnetic moment of the muon, calculated to one-loop by

micrOMEGAS [33], with extra code to calculate the logarithmic piece of the QED 2-loop

calculation, the 2-loop stop-higgs, the chargino-stop/bottom contributions [34, 35], and

the tan2 β enhanced two-loop contribution due to the shift between the muon mass and

Yukawa coupling [36]. As an example of a low energy observable we have plotted the

deviation of the anomalous magnetic moment of the muon from its Standard Model pre-

diction, δaµ = (g − 2)µ − (g − 2)µ|SM in figure 4 (b,d,f), along with the ±1σ contours. The

majority of our observables are from the B-physics sector, as it is this area that combines

sensitivity to the MSSM spectrum with experimental constraints to the greatest extent.

We include the rare branching ratios BR(B → Xsγ), BR(Bs → µ+µ−), BR(B → τν) and

BR(B → Dτν). We use SuperIso [37, 38] to calculate the the isospin asymmetry

∆0− =
Γ(B

0 → K
∗0

γ) − Γ(B± → K∗±γ)

Γ(B
0 → K

∗0
γ) + Γ(B± → K∗±γ)

(3.1)

of the decay B → K∗γ. Finally, we also include the supersymmetric contribution to the

mass splitting of the Bs meson and the supersymmetric contribution Rl23 to the ratio of

the leptonic decays

Rl23 =
BR(K → µνµ)

BR(π → µνµ)

∣

∣

∣

MSSM
. (3.2)

Recent work [39] has investigated the implications for the large tan β scenario of a new

determination of the Standard Model prediction of the branching ratio BR(B → τν). The

new value disfavours any supersymmetric contribution to this process, except when tan β is

large and the charged Higgs mass mH+ is small. This situation is strongly constrained by

BR(B → Xsγ) and BR(Bs → µ+µ−). Furthermore, the anomalous magnetic moment of

the muon favours some supersymmetric contribution to achieve agreement with experiment.

Thus, we expect some tension between (g − 2)µ and some of the B observables.

In order to investigate this we now turn to a χ2 analysis. The χ2 value of the ith
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Observable Constraint Experiment Theory

δaµ × 1010 29.5 ± 8.8 [26] [33–36, 42–44]

mh[GeV] > 114.4 GeV [45] [46]

BR(B → Xsγ) × 104 3.28 ± 0.29 [47] [37, 38]

BR(Bs → µ+µ−) < 5.8 × 10−8 [48] [33, 42–44]

BR(B → Dτν) 0.416 ± 0.138 [49] [37, 38]

BR(Ds → τν) 5.7 ± 0.5 × 10−2 [50] [37, 38]

BR(Ds → µν) 5.7 ± 0.5 × 10−3 [50] [37, 38]

RBτν 1.9 ± 0.60 [39] [37, 38, 51]

∆0− 0.031+0.03
−0.025 [26, 52, 53] [37, 38]

Rl23 1.004 ± 0.007 [54] [37, 38]

Table 1. Experimental constraints, showing the observables, the constraints applied and the source

of the theoretical and experimental values and errors.

observable is

χ2
i =

(pi − ci)
2

σ2
i

(3.3)

where pi is the predicted value and ci is the experimental central value. This is not the

case for the Higgs mass, for which we use a parametrisation of the LEP likelihood provided

in the SoftSUSY package, and the unobserved branching ratio BR(Bs → µ+µ−) where we

use the Tevatron likelihood.2 The total χ2
tot =

∑

i χ
2
i is the sum of the χ2 values of the

individual observables. We note that a study in similar spirit to ours has been performed

in the context of ordinary gauge mediation in [40, 41].

Figure 5 (a,c,e) show the χ2
tot/d.o.f. distributions we obtain from the scans for Mmess =

1 × 106,10,14 respectively, along with 68% and 95% confidence limit contours (∆χ2
tot =

2.41, 5.99 respectively). The region of maximum likelihood is shown in yellow, and the

best-fit points are marked by black splodges. We see immediately that the region of light

supersymmetry where both ΛG and ΛS are small is strongly disfavoured (the blue and

red region). This due to a combination of factors. Since the scalars are light the Higgs

mass is below the LEP bound for which there is a strong χ2 penalty. On top of that,

the supersymmetric contributions to (g − 2)µ and the B-observables are too large. As the

masses of the SUSY particles increase the loop contributions become smaller and the Higgs

mass larger. A large amount of the region of good fit for the higher Mmess has very small

ΛS for Mmess = 1010 GeV, and all of the 68% confidence region for Mmess = 1×1014 has an

inverted hierarchy ΛG > ΛS . For all values of Mmess within the 68% confidence limits shown

the Higgs mass is just above the limit set at LEP, and the anomalous magnetic moment

of the muon is saturated by SUSY effects. However, the region of best-fit to the combined

observables is not the best-fit region of the combined B-observables. We have found the

most sensitive of the B-observables to be BR(B → Xsγ) and BR(B → τν). As discussed

in [55, 56] there is a tension between the SUSY contributions to (g − 2)µ and BR(B →
2We thank C. S. Lin for providing the likelihood for this process.
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Figure 5. (a,c,e) show the χ2
tot distribution in the ΛG-ΛS plane for Mmess = 106 ,1010 and 1014 GeV

respectively, and (b,d,f) show the χ2 of only the B physics observables for the same values of Mmess.

The black lines denote the boundaries of the 68% and 95% confidence regions. The black spots

mark the best-fit points in all cases.
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Mmess 106 GeV 1010 GeV 1014 GeV

ΛG (GeV) 1.08 × 105 2.25 × 105 1.86 × 105

ΛS (GeV) 1.79 × 105 4.96 × 103 1.11 × 103

tan β 57.5 25.2 21.5

χ2
total 14.55 15.47 17.08

Value χ2
i Value χ2

i Value χ2
i

δaµ = (g − 2)µ|MSSM × 10−10 26.8 0.1 20.6 1.0 17.8 1.8

mh (GeV) 118 -1.0 117 -1.0 117 -1.0

BR(B → Xsγ) × 10−4 3.26 1.1 3.05 3.5 3.00 4.0

RBτν 0.63 4.5 0.95 2.5 0.96 2.4

∆0− 0.078 2.5 0.082 2.9 0.083 3.0

BR(Bs → µ+µ−) × 10−9 4.7 0 3.5 0 3.4 0

BR(B → Dτν) 0.27 1.2 0.29 0.8 0.30 0.8

Table 2. Values of ΛG, ΛS and the constraints at the best-fit points for Mmess = 106 GeV (left

column), Mmess = 1010 GeV (middle column) and Mmess = 1014 GeV.

Xsγ). The current Standard Model prediction of BR(B → Xsγ) is consistent with the

experimental value. Also, while there is a small discrepancy between the SM prediction

and the experimental determination of BR(B → τν), any supersymmetric contribution to

this process will lead to a worse fit than the Standard Model.3 These data thus pull towards

the decoupling limit of a heavy supersymmetric spectrum. We can see this in figure 5 (b,d,f)

which show the χ2 distribution and 68% and 95% confidence limits obtained when we omit

mh and (g − 2) from the total χ2 for Mmess = 106,10,14 respectively. Dark spots mark

the new best-fit points. There is a clear preference for large values of ΛG and ΛS . While

the mass of the lightest Higgs is well above the lower bound and thus contributes nothing

to the χ2
tot, in this region the SUSY contributions to (g − 2)µ are very small, leading to

this observable having an individual χ2 between 5 and 11 depending on the details of

the spectrum.

Considering again the case of all observables combined, the χ2
tot value of the best-fit

points are 14.55, 15.47, 17.08 and for Mmess = 106, 1010 and 1014 GeV respectively. These

correspond to p-values of 0.069,0.051 and 0.029. If we adopt a significance level of 5%,

then we would reject the possibility that Mmess = 1 × 1014 GeV. The values of ΛG, ΛS

and the constraints at the best-fit points are shown in table 2. We provide the spectra of

these three points in appendix B. More importantly for us, what are the implications for

efforts towards model building? If we take the 95% confidence limits as some indication

of what the scales of the gaugino and scalar masses should be, for all values of Mmess we

have presented there is an upper bound on ΛS of around 500 TeV. What is perhaps more

interesting is that we have not found it possible to put a lower bound on ΛS . Looking

at figure 5 it is clear that ΛG/ΛS ≪ 10−1 is disfavoured by current indirect observables.

3This is not necessarily true if tan β is very large and mH+ is very small. In our scenario mH+ is never

small enough for this to happen.
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However, a mild hierarchy ΛG/ΛS & 1/10 is consistent with the data. This puts strong

constraints on models of pure direct gauge mediation.4 However, this ratio is less of a

problem for hybrid models and models with explicit messengers. What is more surprising

is that ΛG/ΛS can be as large as a few hundred without being disfavoured for large values

of the messenger scale.

It must also be stated that our fits apply only to the specific solution of the µ/Bµ

problem considered in this paper, which leads to large tan β. A model with large tan β can

successfully fit (g − 2)µ with a heavier sparticle spectrum than one with smaller tan β. On

the other hand, smaller values of tan β are more favoured by the B physics constraints.

4 Fine tuning and naturalness bounds

The mass of the Z boson is obtained in the MSSM by minimization of the scalar Higgs

potential. At tree level this leads to the relationship

M2
Z

2
=

m2
Hd

− m2
Hu

tan2 β

tan2 β − 1
− µ2 (4.1)

eq. (4.1) is still valid under the full effective potential Veff = Vtree + ∆V if one makes

the substitutions

m2
Hu,d

→ m2
Hu,d

+
1

2vu,d

∂(∆V )

∂vu,d
(4.2)

where the vacuum expection values vu,d are treated as real parameters in the differentiation.

In the relevant limit of large tan β this becomes

M2
Z

2
= −

(

m2
Hu

+ µ2
)

+
1

tan2 β

(

m2
Hd

− m2
Hu

)

+ O(1/ tan4 β) (4.3)

Therefore if large cancellations do not take place, −m2
Hu

and µ2 should be of the same

order of magnitude as M2
Z .

At tree-level the mass of the lightest Higgs is below MZ . It receives large one-loop

corrections from the top sector, which allow for phenomenologically acceptable values of the

Higgs mass if the stops are sufficiently heavy. A recent detailed study, ref. [57], gives MS =
√

mt̃1
mt̃2

≥ 600 GeV. Further constraints on the spectrum come from the direct search

limits at LEP and Tevatron. The large lower bounds obtained from these experiments

on the scalar masses implies that some cancellations must take place in eq. (4.1) for the

Z boson to have the correct mass. Such cancellations, where it is necessary to fine-tune

one of the parameters of the theory in order to achieve a phenomenologically acceptable

result, are not desirable in a theory specifically proposed for its ability to solve one of

the major fine-tuning problems of the Standard Model. As direct search limits increase,

the minimum allowed fine-tuning increases, decreasing our belief that supersymmetry is

realised. Furthermore there is some inherent subjectivity in how one chooses to define an

4Strictly speaking direct mediation models often have additional light messenger fields. In our numerical

analysis we have neglected their possible contributions to the running.
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appropriate measure of fine-tuning, and what constitutes an acceptably high level of fine-

tuning in a theory. Should we accept fine-tuning at the 10% level, but not 1%? For these

reasons we think that while an analysis of the necessary fine-tuning required to achieve

electroweak symmetry breaking in General Gauge Mediation is worthwhile, arguments

based on fine-tuning should not be used to rule out any theory under consideration.

With this caveat in place let us proceed. A number of definitions of a suitable quan-

tification of fine-tuning have been proposed [58, 59]. In this work we adopt the definition

of [59], which is incorporated in the SoftSUSY code. Consider a set of model parameters

{a}. For us a = {ΛG,ΛS , µ}. Since Bµ is set to be zero at the high scale Mmess we do not,

of course, consider it to be part of our fine-tuning measure. Then the sensitivity of M2
Z to

the parameter ai is

cai
≡

∣

∣

∣

∣

∂ ln M2
Z

∂ ln a

∣

∣

∣

∣

(4.4)

The total fine-tuning in the soft-parameters is defined to be ca = max(cai
). While this

makes clear the sensitivity of M2
Z to the soft breaking parameters, it is also possible that

there could exist a region of parameter space that evades the naturalness bounds in the soft-

parameters but is very finely tuned with respect to some other parameter. The canonical

example of this is the focus-point region in the Constrained MSSM [60], which despite

being a region of low fine-tuning from the perspective of the universal scalar mass m0, is

nonetheless very sensitive to the top Yukawa ht. The top Yukawa coupling is different in

some ways to the soft masses we have included in our definition of ca: it is dimensionless

and is related in an intimate way to the measured mass of the top quark Mt [61]. For these

reasons we do not include it in our definition of ca. We have examined the results for cht

and found them to be qualitatively similar.

We show in figure 6 (a,b,c) the level fine-tuning required in our scans with Mmess = 106,

1010 and 1014 GeV as in the previous section.5 We also show contour lines corresponding

to fine-tuning at the ca = 100 and 1, 000 levels. The minimum fine-tuning possible is

around ca ∼ 30. However, the region in which this occurs is strongly disfavoured by the

low energy observables. In fact, the region preferred by the low energy observables is quite

well delineated by the contours of 100 and 1, 000 for Mmess = 1×1010,14. That this amount

of fine-tuning is necessary is somewhat troubling, but is comparable to the situation in the

mSUGRA scenario.

It is interesting to note that the χ2 (figure 5) and the fine-tuning (figure 6) prefer

different regions of parameter space. Without the χ2 analysis the fine-tuning plots alone

would favour light supersymmetry. However, the comparison with measured observables,

i.e. the χ2, favours somewhat heavier superpartner masses.

Finally let us comment on the ΛG/ΛS ratio and its effect on the amount of fine-tuning.

Keeping ΛS fixed and moving horizontally to the left, i.e. decreasing ΛG we see that the

fine-tuning decreases. This is because the fine-tuning is dominated by the scalar mass

squareds which decrease when either ΛG or ΛS decrease. In particular, beginning on the

line of ordinary gauge mediation and decreasing ΛG (with low χ2) does not lead to a

5For earlier work on alleviating the fine-tuning problem in gauge mediation see [62]
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Figure 6. Plots showing level of fine-tuning required to successfully break electroweak symmetry, ca

(roughly speaking we have to tune to 1 part in ca) for (a) MMess = 106 GeV, (b) MMess = 1010 GeV

and (c) Mmess = 1014 GeV. Also shown are the contours of ca = 100 and 1000.
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significant increase in either the amount of fine-tuning or in χ2. In this sense mildly split

SUSY is not at all disfavoured compared to ordinary gauge mediation.6

5 Conclusion

We have investigated the phenomenology of pure general gauge mediation. In this setup

the Bµ parameter is close to zero at the messenger scale but appears at low energies due

to running. Consequently its value is rather small at the electroweak scale, leading to

relatively large values of tan β ∼ 15− 65. In the spirit of general gauge mediation we treat

the scalar and gaugino mass scales, ΛS and ΛG, as two independent input parameters.

We applied a raft of experimental constraints including the Higgs mass, (g − 2)µ and

B → Xsγ. We determined the favoured region of parameter space which includes mildly-

split (ΛG ∼ 0.1ΛS) as well as the non-split (ΛG = ΛS) SUSY signatures, characteristic of

direct/hybrid and ordinary gauge mediation, respectively. Our χ2 analysis does not favour

one over the other within the phenomenologically preferred region. The opposite hierarchy

ΛG ≫ ΛS is also allowed. We find lower messenger masses to be slightly favoured over

higher ones. The fine-tuning is typically of the percent level.

General gauge mediation and gravity mediation both have rich parameter spaces.

Therefore it is useful for phenomenological analyses to define a canonical model that en-

compasses the most relevant features. In the case of gravity mediation this has always been

mSUGRA/CMSSM with the parameters m0 and m1/2 (as well as tan β and A0). Here we

have analysed a similar characterisation of general gauge mediation, pure GGM, in terms

of ΛS, ΛG and Mmess (the Bµ parameter and trilinear couplings being determined to be

small at the messenger scale).
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A Generating µ and Bµ in GGM

The authors of [15] discussed two types of (non-gauge) couplings between the SUSY-

breaking sector and the Higgs fields. The first type involves SU(2) doublet hidden-sector

operators Φu,d which couple to the Higgs fields through the superpotential coupling

∫

d2θ (λuHuΦd + λdHdΦu) , (A.1)

6Conversely, if we were to reduce the ΛG/ΛS ratio by increasing ΛS with ΛG fixed we would see an

increase in the necessary fine-tuning. The second procedure is essentially an increase in the supersymmetry

breaking scale whereas the first procedure can be viewed as keeping the SUSY-breaking scale fixed but

increasing the amount of direct mediation.
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and the second class of models is in terms of an SU(2) singlet hidden-sector superfield S,

which couples to the Higgs fields as
∫

d2θ λ2SHuHd . (A.2)

The hidden-sector fields Φu,d in (A.1) and S in (A.2) can be composite operators of an

underlying theory or could be elementary fields. We shall always assume that these models

are weakly coupled, i.e. λu, λd, λ ≪ 1.

In the following we will analyse the doublet model (A.1). The singlet model can be

analysed in a very similar way and the results are qualitatively similar.

These models are further divided into two categories depending on how many distinct

scales exist in their hidden sectors.

A.1 One-scale models

This is the case (c) from the main text where the hidden-sector is characterized by a single

effective scale F/M , where F is the SUSY-breaking F -term vev and M is the messen-

ger mass.

To leading order in the couplings λu and λd and in the SUSY-breaking scale, the model

with doublet messengers in (A.1) generates the following scaling pattern of contributions

to µ and the soft terms [15]

µ ∼ λuλd
F
M (A.3)

Bµ ∼ λuλd
F 2

M2

δm2
u,d ∼ |λu,d|2 F 2

M2

δau,d ∼ |λu,d|2 F
M .

Since both µ and Bµ are generated at order λuλd and there is only one mass-scale in the

problem, it follows that Bµ/µ2 ∼ 1/(λuλd) ≫ 1, thus giving the standard incarnation of the

µ/Bµ-problem which precludes electroweak symmetry breaking. To improve the situation,

one would have to suppress the Bµ term by higher powers of small hidden-sector couplings,

which can be achieved, as discussed in refs. [16–23], but requires a specially engineered

SUSY-breaking sector.

A.2 Models with more than one scale

Now the hidden-sector is characterized by at least two mass scales. Essentially we assume

that some fields of the hidden-sector acquire vevs at the scale M , but supersymmetry

is broken at a much lower energy with F ≪ M2. We treat F and M as independent

parameters, so that M does not vanish in the limit of restored SUSY F → 0. Since µ

is a supersymmetric parameter, it does not depend on F to leading order in two-scale

models, but the SUSY-breaking terms, such as Bµ must depend on F . More generally,

these models can accommodate a variety of messenger scales (different messenger masses

is a typical feature of dynamical SUSY-breaking models with direct gauge mediation). In

particular we can have a structure
√

F < Mmess < M , where Mmess is a typical mass of
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messengers participating in the pure gauge mediation, and M is a vev scale of doublet

messengers interacting with Higgses.

To leading order in λu and λd and in the SUSY-breaking scale F , the model which

included doublet messengers (A.1) can express a typical scaling pattern [15]

µ ∼ λuλdM (A.4)

Bµ ∼ c(1)λuλdF + c(2)λuλd
F 2

M2
mess

δm2
u,d ∼ |λu,d|2

F 2

M2
mess

δau,d ∼ |λu,d|2
F

Mmess

F

M2
mess

≪ 1 , λu ∼ λd ≪ 1

In the equation for Bµ we have shown the leading and the subleading term in the SUSY-

breaking scale F . The authors of [15] were strongly attracted to using symmetry to suppress

the leading order contribution to Bµ thus setting c1 = 0 and c2 ∼ 1. This is indeed possible

in the class of models they considered, and the symmetry reasoning can be based on the

fact that the effective µ and Bµ terms in (1.3), (1.4) cannot be both neutral under the

R-symmetry (and the same applies to Peccei-Quinn symmetry which rotates both H fields

by the same phase).

With this constraint in place one is able to consider simple two scale models with

Mmess ∼ M ,

Bµ ∼ λuλd
F 2

M2
. (A.5)

If all the small parameters of the system happen to be of the same order, i.e.

F

M2
∼ λu,d ∼ αSM ∼ 10−3 − 10−2 (A.6)

one finds

µ2 ∼ Bµ ∼ δm2
u,d and µ ≫ δau,d , (A.7)

which implies for the λ-extension of GGM:

1. both µ and Bµ are generated as inputs above the electroweak scale (so that µ2 ∼ Bµ

and there is no µ/Bµ problem affecting electroweak symmetry breaking);

2. there are non-trivial contributions to the soft Higgs masses δm2
u,d on top of the

expected GGM contributions ∼ α2
SM;

3. the additional (to GGM) contributions to the trilinear soft terms are negligible,

δau,d ≃ 0.

In particular point (2) marks a deviation from the spirit of gauge mediation.
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We will now see what happens when we do not impose eq. (A.6). We can unfreeze the

small parameters in (A.6) taking instead

F

M2
≪ λu,d ≪ 1. (A.8)

This can be achieved by increasing M while keeping F fixed. This really corresponds to

the case of µ being generated at a scale which has nothing to do with the SUSY-breaking

F . Then
Bµ

µ2
∼ 1

λuλd

F 2

M4
≪ 1 if c(1) = 0 . (A.9)

µ ∼ λuλdM is the only non-trivial input parameter of the Higgs potential of the model

(which will be set ∼ mweak by the electroweak symmetry breaking). Because we can take

λu,d ≪ αSM the contributions of the Higgs couplings to the soft SUSY-breaking terms

are small

Bµ ≪ µ2 , δm2
u,d ∼ 0 ∼ δa2

u,d (A.10)

Therefore, these terms are essentially the same as for pure gauge mediation, and the pre-

diction for scalar masses [1]

m2
u = m2

d = m2
L̃

(A.11)

is unchanged.

If we allow Mmess and M to be independent then we can easily accommodate a non-

vanishing c(1):

Bµ

µ2
∼ 1

λuλd

F

M2
∼

(

F

µMmess

)(

Mmess

M

)

∼ 16π2

(

Mλ̃

µ

)(

Mmess

M

)

if c(1) 6= 0 .

(A.12)

This can clearly be chosen to be either of order one or much less than one. Even in the

former case one can then ensure that the scalar masses are really dominated by the true

GGM contributions by again choosing λu,d ≪ αSM. Most of the parameter space has neg-

ligibly small Bµ/µ2 and values of order one correspond to a tuning; our phenomenological

analysis covers the generic regions of parameter space where Bµ/µ2 ≪ α2
SM.

B Spectra

Figure B shows the sparticle spectrum we obtain at the best-fit points of our scans. For

Mmess = 106 GeV the NLSP is the neutralino with a mass of 146 GeV while the NNLSP is

the lightest stau of mass 265 GeV. The gluino mass is approximately 1.8 TeV. The lighter

right-handed sleptons have masses around 300 GeV and the left-handed sleptons just over

600 GeV. As is usual for GMSB spectra, there is a hierarchy between the sleptons and

squarks. The average squark mass is 1670 GeV.

The spectrum for Mmess = 1010 GeV differs from the Mmess = 106 GeV case in having

lighter scalars due the low value of ΛS and a more compressed gaugino spectrum. The

NLSP is the right-handed stau which just evades the bound of 98 GeV from searches from

CHAMPS at OPAL [27] and the NNLSP is the degenerate selectron-smuon pair. The
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Mmess = 106 Mmess = 1010 Mmess = 1014

ΛG (GeV) 1.08 × 105 2.25 × 105 1.86 × 105

ΛS (GeV) 1.78 × 105 4.96 × 103 1.11 × 103

χ0
1 146 299 245

χ0
2 286 547 462

χ0
3 706 644 668

χ0
4 712 677 683

χ±
1 719 543 460

χ±
2 892 678 682

g̃ 1782 1534 1299

ẽL, µ̃L 625 331 358

ẽR, µ̃R 312 135 172

τ̃L 633 344 365

τ̃R 265 100 144

ν̃1,2 620 324 352

ν̃3 616 324 350

t̃1 1649 1211 1108

t̃2 1516 1059 924

b̃1 1650 1165 1060

b̃2 1550 1204 1100

ũ1, c̃1 1822 1277 1182

ũ2, c̃2 1690 1215 1114

d̃1, s̃1 1784 1246 1154

d̃2, s̃2 1679 1213 1110

h0 117 117 117

A0,H0 569 722 740

H± 575 727 744

Table 3. Best fit spectra for the three messenger scales. All masses are in GeV. The NLSP is

shown in bold in each case. (The LSP is the gravitino.)

heavier sleptons still only have masses of just above 300 GeV. The lightest gauginos are

the neutralino and the chargino, and the gluino mass is 1.5 TeV. The squark masses are

lighter in than the Mmess = 1 × 106 GeV case by nearly 500 GeV and their average mass

is 1.2 TeV.

There is a close resemblence between the Mmess = 1 × 1014 GeV and Mmess = 1 ×
1010 GeV best-fit points. Both have a very large hierarchy ΛG ≫ ΛS . For Mmess =

1 × 1014 GeV the NLSP is again the stau which in this case is slightly heavier than that

for the best-fit point, and the NNLSP is the selectron-smuon pair. As the value of ΛG is

slightly smaller, the squarks are correspondingly lighter.
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[34] S. Heinemeyer, D. Stöckinger and G. Weiglein, Two-loop SUSY corrections to the anomalous

magnetic moment of the muon, Nucl. Phys. B 690 (2004) 62 [hep-ph/0312264] [SPIRES].
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